Roll-dependent modulation of the subjective visual vertical: contributions of head- and trunk-based signals.
نویسندگان
چکیده
Precision and accuracy of the subjective visual vertical (SVV) modulate in the roll plane. At large roll angles, systematic SVV errors are biased toward the subject's body-longitudinal axis and SVV precision is decreased. To explain this, SVV models typically implement a bias signal, or a prior, in a head-fixed reference frame and assume the sensory input to be optimally tuned along the head-longitudinal axis. We tested the pattern of SVV adjustments both in terms of accuracy and precision in experiments in which the head and the trunk reference frames were not aligned. Twelve subjects were placed on a turntable with the head rolled about 28 degrees counterclockwise relative to the trunk by lateral tilt of the neck to dissociate the orientation of head- and trunk-fixed sensors relative to gravity. Subjects were brought to various positions (roll of head- or trunk-longitudinal axis relative to gravity: 0 degrees , +/-75 degrees ) and aligned an arrow with perceived vertical. Both accuracy and precision of the SVV were significantly (P < 0.05) better when the head-longitudinal axis was aligned with gravity. Comparing absolute SVV errors for clockwise and counterclockwise roll tilts, statistical analysis yielded no significant differences (P > 0.05) when referenced relative to head upright, but differed significantly (P < 0.001) when referenced relative to trunk upright. These findings indicate that the bias signal, which drives the SVV toward the subject's body-longitudinal axis, operates in a head-fixed reference frame. Further analysis of SVV precision supports the hypothesis that head-based graviceptive signals provide the predominant input for internal estimates of visual vertical.
منابع مشابه
Subjective Visual Vertical and Horizontal Abnormalities in a Patient with Lateral Medullary Syndrome-A Case Report
Introduction: Evaluation of persistent vertigo in post infarct patients is very important as the management depends on whether the cause is purely of central origin or due to associated vestibular affliction. Case Report: A patient with left sided dorsolateral medullary syndrome and persistent vestibular symptoms was evaluated. Vestibular test battery showed abnormal smooth pursuit, bilateral...
متن کاملDifferential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision
The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV), occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A-/E-effect) are likely ba...
متن کاملVisual effects on the subjective visual vertical and subjective postural head vertical during static roll‐tilt
OBJECTIVES Tilt perception is part of the perception of spatial orientation. It is determined not only by the allocentric gravity axis, but also by a second allocentric axis induced by visual information as well as by the egocentric body (head) axis induced by somatosensory information. The aim of this study was to quantify roll-tilt perception using the subjective visual vertical (SVV) and the...
متن کاملGravity dependence of subjective visual vertical variability.
The brain integrates sensory input from the otolith organs, the semicircular canals, and the somatosensory and visual systems to determine self-orientation relative to gravity. Only the otoliths directly sense the gravito-inertial force vector and therefore provide the major input for perceiving static head-roll relative to gravity, as measured by the subjective visual vertical (SVV). Intraindi...
متن کاملEgocentric and allocentric alignment tasks are affected by otolith input.
Gravicentric visual alignments become less precise when the head is roll-tilted relative to gravity, which is most likely due to decreasing otolith sensitivity. To align a luminous line with the perceived gravity vector (gravicentric task) or the perceived body-longitudinal axis (egocentric task), the roll orientation of the line on the retina and the torsional position of the eyes relative to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 2 شماره
صفحات -
تاریخ انتشار 2010